Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

نویسنده

  • Maria Gomes-Solecki
چکیده

Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity of Borrelia burgdorferi sensu stricto in Peromyscus leucopus, the primary reservoir of Lyme disease in a region of endemicity in southern Maryland.

In the north central and northeastern United States, Borrelia burgdorferi sensu stricto, the etiologic agent of Lyme disease (LD), is maintained in an enzootic cycle between the vector, Ixodes scapularis, and the primary reservoir host, Peromyscus leucopus. Genetic diversity of the pathogen based on sequencing of two plasmid-located genes, those for outer surface protein A (ospA) and outer surf...

متن کامل

Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi

A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...

متن کامل

Reductions in human Lyme disease risk due to the effects of oral vaccination on tick-to-mouse and mouse-to-tick transmission.

Vaccinating wildlife is becoming an increasingly popular method to reduce human disease risks from pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. To successfully limit human disease risk, vaccines targeting the wildlife reservoirs of B. burgdorferi must be easily distributable and must effectively reduce pathogen transmission from infected animals, given that many ...

متن کامل

Antibody response of the mouse reservoir of Borrelia burgdorferi in nature.

To determine whether the white-footed mouse reservoir host (Peromyscus leucopus) of the agent of Lyme disease (Borrelia burgdorferi) naturally mounts an immune response against the full range of antigens expressed by this zoonotic pathogen, we analyzed the pattern of immunoreactivity of these rodents at sites in which the intensity of transmission differs. Although the incidence of seroconversi...

متن کامل

Oral vaccine that breaks the transmission cycle of the Lyme disease spirochete can be delivered via bait.

Borrelia burgdorferi causes Lyme disease, a potentially debilitating human disease for which no vaccine is currently available. We developed an oral bait delivery system for an anti-B. burgdorferi vaccine based in OspA. Mice were immunized orally via gavage and bait feeding. Challenge was performed via Ixodes scapularis field nymphs carrying multiple B. burgdorferi strains. Vaccination protecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014